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ON THE FLEXURE OF A STRIP WITH A TRANSVERSE SERIES OF CIRCULAR HOLES 
OR ABSOLUTELY RIGID INCLUSIONS* 

M. L. BURYSHKIN 

The flexure of an isotropic strip with a periodic transverse series of circularholes 

of rigid inclusions is considered. The state of stress is described by the func- 

tions cp(z) and Q(z) which are analytic in the domain Qe occupied by the strip, 

and comprised of main (,+a), ,I.(@) corresponding to the solid strip, and perturbed 
(@'.d"') functions /l-33/. The required functions VO") (2) and Q(" (2) should satisfy 

special conditions on the hole of inclusion outlines and on the straight line edges. 

A similar problem for a single hole or inclusion was studied in /2,4/, where it was con- 

sidered that the influence of the edge on the perturbed state could be neglected. Certain 
boundary conditions on the rectilinear edges can be satisfied strictly by going over to a 

computation of an infinite plate S of periodic structure whose load is converted by a one- 

dimensional representation of the group C,(GI1, Dw,'). 

Direct extension of the method mentioned to the analysis of a strip with a regular trans- 
verse series ofholesorinclusionsisquite awkwardsince it is associated with the investigation 

of boundary conditions on a large number of outlines. However, a given load can always be 
decomposed into components for which significant simplifications of the solution hold and 
then the superposition principle can be used. Such components are the loads Q,,,(11~~1.21 which 

are converted by the two-dimensional representations TV of the symmetry group (' of the 

plate S. 
In connection with this investigation scheme /5/, formulas are obtained for practical 

application in this paper, of the decomposition of the fundamental state of stress, and an 

algorithm is constructed for the solution of the generalized periodic flexure problem, i.e., 

an analysis of a plate S with a symmetry group c, for the loads V,,,(q z- 1.1). The appropri- 

ate functions O:;(z) and q:!,(z) are expressed in terms of the functions (II(")(;) and @)(~)(p ~- 

1.2) which are analytic on the exterior of the main outline orId are determined from a system 

of its boundary conditions correspondingtoeachofthe loads (&(I) 1, 2). The numerical solution 
ofthegeneralizedperiodic flexureproblemisbasedonits reductionto aninfinite systemofalge- 
braic equations. The state of stress of a simply supported strip is investigated during its 
cylindrical flexure by moments and transverse forces by using the method proposed. 

1. Generalized Periodic Flexure Problem. Let us present certain information 

referring to the formulation and solution of the generalized periodic problem of the flexure 

of an infinite plate S with a regular series of circular holes or circular rigid inclusions 
(Fig-l). 

Irreducible representations of the group c, /6/. The translations TT (r L 0, 

&1,*2,...), shifts by a vector 2rl along the I axis, where 21 is the basis vector, and 

reflections @,(r L 0, _tl, r+2, . ..) on the planes n, are elements of this group, i.e., 

symmetry elements of the plate S. They can be multiplied as arbitrary motions. In part- 

icular 
TJ, = T,,,, T,@, = @,,+,., @,,,T,. O,,_,, O,O, =: T,_,, Q.9 m=U,il, k2,...) 

For fixed a the set of matrices 

vx(T,)= 
(1.1) 

is a representation ra of the group C, since it satisfies the condition 7~ (&?&a (b's) 1 rt, (g&z) 

tvg,, g,E G). The dimensionality of the representation ra , i.e., the order of the square 

matrices forming it, is two. For U-., cc< x all the representations ra are distinct (non- 

equivalent). For O< c(< n the representations 7, are irreducible and denoted by rCI1_ In 

cases when a~ 0,n the matrices ra(g) are diagonal. Their upper and lower diagonal ele- 

ments form the one-dimensional irreducible representations r,l and raz, respectively. If 
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the number of distinct irreducible representations T,, corresponding to the subscript a is 

denoted by I, and their dimensionality by m,. then for a = 0, TI and O< a <n the equal- 

ities I, == 2, m, = 1, and I,= 1, ma = 2 hold, respectively. Henceforth, T,~,, (g) (p, p= 1,2, 

. . ., m,) and Gus (p, ~1 = 1, 2) are understood to be the pp-th elements of the matrices ray(g) 

and ~a (g). 

Fig.1 

Functions converting into irreducible representations. The domain Q occupied 

by the plate S is divided into elementary cells by reflection planes 8,. The main cell S", 

bounded on the left by the y axis, occupies the domain &". 

Let us examine the nta functions faYll(u z 1,2,...,m,) given on & and possessing the 

following properties: 
m, 

It is said about the function lay,, that it is converted by the irreducible representa- 

tion TV, as the p-th basis function. The load functions or the components of the state of 

stress-strain, whose values depend on the selection of the coordinate axes, should hence be 

written first in an invariant reference system requiring the introduction of local coordinat- 

es for each elementary cell. If the I, and y axes are used as such in the subdomain Qe, 
then the shifted axes gz and gy are such in the subdomain QJ = gS1p. About the state of 

stress-strain whose components are converted as the IL-th basis functions by the representa- 

tion T, in the invariant reference system, that it is also converted by this representation. 

It is useful to simplify and unify the general symbolism for the group C,. Let us note 

that for any a, one of the subscripts Y or p is fixed (equal to one), while the other takes 

on the value 1 or 2, and we omit the fixed subscript. Thus, a function being converted by 

the representation T,, as the P-th basis is denoted by fau, where p = Y (a = 0, n) or 

p := p (OK a< n). For a=o,n the functions f,-+(p = 1, 2) are not interrelated, where- 

upon by studying one of them it can be provisionally assumed that the other is identically 

zero. We then have in place of (1.2) 

la,, (G) = ~~1r~,~ii(6) far, (z), Vg EC,, VzEQe()J=l,')) (1.3) 

The problem of flexure of the plate S under the load fcLll which is being converted by 

the irreducible representation ~~~ of the group C,. is called a generalized periodic prob- 

lem. The ordinary periodic problem is a particular case since the periodic load is a function 

($. 
(or fd which is being converted by the one-dimensional irreducible representation To1 

Complex Kolosov-Muskhelishvili functions. The internal force factors in the 

plate S are determined by using two complex functions m(z) and T*(~) which are analytic in 
the domain 52 /2,3/: 

~~~~ + ~Tu = -4 (1 + Y) Re 'p' (z), JI, - ,I¶, + 2iAl,., = 2 (1 - Y)[ZW" (2) + up*' (z)], N, - iN, = -4~" (z) (1.4) 

where v is the Poisson's ratio. The Sherman function $ (z) = ?&.(z7 zcp'(z) is latter used 

in place of.the function qar,(z). 
The class of functions mad $(z)is successfully narrowed considerably in the ordinary 

periodic problem by using the periodicity of the state of stress. Analogous simplifications 
hold in the generalized periodic problem. The fact is that a state of stress-strain of the 
plate S is transformed in exactly the same way by an irreducible representation TV, of the 

group C, (*) corresponding to a load Qalr. Let (c~,(z) and $,,, (z) denote complex functions 

describing the state mentioned. Any function of this class, which is characterized by the 

*I This property is investigated in the paper: Buryshkin, M. L., On application of the theory 
of discrete group representations in problems of equilibrium and small oscillations of linear 

elastic systems, VINITI, No. 208-75, (1975). 
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fact that the internal force factors possess the property (1.3), can be written as follows 

/5/: 

where (I,(P) (2) and 'I!(", (z) (p = 1, 2) are certain functions which are analytic on the exterior 

of the main hole with contour I;. According to (1.4) and (1.5), these functions are again 

the desired functions in the generalized periodic problem. 

Sufficient contour conditions /5/. In general, the functions cpau(z) and $aP(~) 

should satisfy the boundary conditions on any of the contours of the infinite series. However, 
writing the form (1.5) permits one to be limited to satisfying asystemofboundaryconditions 

for each of the loads VW, (11 == 1,Z) on the main contour 

where 1 is a point of the contour I i. fC, and K 
lem, IW,(Jj Cl) is a function related to the load 

are constants dependent on the kind of prob- 

Qall (t) of the contour L and car1 is a real 

constant determined from the condition that the deflection function be single-valued for a 

complete traversal around this contour. By virtue of the properties (1.31, the boundary con- 
ditions on the remaining contours are automatically satisfied. 

By separating the state of stress of the plate into the main (@W, $'O') and perturbed 
($I', 11"") functions, and referring the multivalued components of the complex functions to 

v(O) (z) and @O)(Z), we obtain in place of (1.6) 

KIC&,r(') (t) -t_ K, r(t - Q(FRo'l"(t)+ $arJ @)I = /c&l, (f) (q = 1: 2) (1.7) 

fall (t) = fall(l) (t) - KL(~mlCnl (t) - K, l(t - t)rPml(o)' 0) _t I&(O) @)I + k,,q (1.8) 

where 'pa,,(l) (2) and &,,(l) (z) 
mination of these functions 

periodic problem. 

The series method. 

are holomorphic in the domain occupied by the plate 

from (1.7) is the main stage in the solution of the 9 

The deter- 

-eneralized 

Let us first note that according to the above the complete and 

fundamental states of stress sh0ul.d be converted by means of the irreducible representation 

T,v . Therefore, the perturbed state possesses the same property, and expressions of the 

type (1.5) are valid for the components q$i (2) and $Cl (2) r where the functions (I)(P) (2) 

and Y(P) (z) are holomorphic outside the main cavity and can be represented in the form 

1.9) 

where d is the spacing between the center of the main contour and the y-axis, and Qli and 

bPfr (p -1 1, 2; IZ -= 1, 2, . . .) are constants. 

The solution of the ordinary periodic flexure problem in series is elucidated in detail 

in /3/. The scheme of this solution is conserved for the extenstion being considered and is 

the following: Expressions of the type (1.5) for the functions Qz$)(z) and &#~(z), together 

with the expansions (1.9), are substituted into (1.7). Both sides of the latter are combined 

on the main contour L into a Fourier series (in the powers of d = t- d = eiti). By equating 

coefficients of identical powers of U, an infinite system of algebraic equations is formed 

from which the desired quantities aPl; and b,,, (p := 1, 2; ?i -2 1, 2, . , . ) are evaluated. For loads 

symmetric to the x-axis these quantities are real, the constant is CcLll = 0, and the system 

itself has the form 

(1.10) 
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6,k is the Kronecker delta, Ck"' is the number of combinations of k elements taken m at a 

time, "j+ (9 == 1, 2; m = 0, t 1, . . . ) are coefficients of the expansion of fall(t) in a Fourier 

series, and the asterisk above the summation sign by r meansthe componentcorrespondingtothe 

value r=O is missing. It can be shown that the solution of the system (1.10) by the trun- 

cation method is correct. For s1 : 0.5 and e :z 0 I equations (1.10) decompose into two 

independent sets, one of which agrees with the known system of equations for the ordinary 

periodic problem /3/. 
Let us note that the error of the method diminishes as the order of truncation of the 

system (1.10) grows. The error in the verifying contour relationships .11,: 0 (cavity) and 

MU == vM,(inclusion is an indirect but practically acceptable estimate. For the numerical 

examples presented ).n this paper, the order of thetruncatedsystem was taken at 40 (k m = 1, 

2, . ..,20). The errors in the verifying relationshipsinall the points considered did not exceed 

3% of the external load intensity. As regards the corresponding verifying equalities Mz = 0 

for the unloaded and fif, = nf for the loaded rectilinear edges, their accuracy increases as 

the number N grows in the calculation of the complex potentials by (1.5) and the parameters 
hl.'E'. This number was chosen so that the relative error in the relationships mentioned did 

not exceed 0.5%. 

2. Scheme for computing the state of stress of the strip. Let us examine the 

main steps in this scheme for a strip with a regular transverse series of n circular cavities 

or inclusions. 

Transition to the computation of an infinite plate. The planes II,. (r := 0, 

?c n, .) separate the infinite plate into strips of width l* ~11. These strips are element- 

ary cells in the sense of the group C,*, which differs from the group C, just by the funda- 

mental translation vector 21*. We assume that the load Qliw* on the plate S is converted by 

one of the irreducible representations of the group C,*. Then certain boundary conditions 

/6/ are automatically reproduced in the planes 11, and IT, . Let us list the most important 

of thes?: a) simple support on two edges of the strip is the load Q~z*; b) simply dependent 

edge (fixing the angles of rotation around these edges) is the load Qol*; c) simply supported 
left and simply dependent right edge is the load Qn?*. 

Let one of these conditions hold on the rectilinear edges of the strip. Then an infinite 

plate S whoseloadis converted by the appropriate irreducible representation of the group C8* 

and agrees with the given load on the strip in the cell S'* located between the plates rI, 

and n,,, can be studied instead. The state of stress-strain of the strip and the cell S'* 

of the plate S are identical (*). 

Let us note that the facts elucidated here acquire an obvious mechanical meaning if the 

symmetric properties of the functions Ofip* are clarified by using the relationships (1.3). Thus, 

for instance, for a load QO,* on the plate S, the loads on adjacent strips (cells) are 

obtained from each other by reflection in the common boundary plane, and for the load 002' by 
the same reflection with a subsequent change in sign. 

Expansion of the load /6/. Thus the load QB,,* of the plate S which possesses the sym- 

metry group C, is converted by the representation rp,* of its subgroup c,*. The following 
expansion then holds 

where h-, is the set of all numbers a of different absolute value that satisfy the relation- 
ships 

a=(B+2ni)ln (i=o,+1,*2,...), lczj<n (2.2) 

Formulas (2.1) and (2.2) determine the structure of the decomposition of the problem into 

generalized periodic 

being converted with 
from the expressions 

problems. The load components in the expansion (2.1), and the functions 

them by the irreducible representation ra,, of the group C, are found 

(2.3) 

which have the following simple form for one-dimensional representations of the group C.* (p = 

0, x) n--l 

Qall(Z) = 2 -&,, (T,.)Q;P(~-2rl), \'r~n (n=l,Z) (2.4) 
,-=0 

*) The appropriate theorem is formulated without proof in /6/. The proof is presented in the 
paper mentioned in the previous footnote. 
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Solution of the generalized problems and their superposition. In order 
that the solution of the generalized problem corresponding to the load Qa,, be present, all 

the loads Qa, = Qa,l(@ f Qaq(l) (q = 1, 2) should be determined by means of (2.3) or (2.4), where 

Qa,,('l and Qaq(') are loads distributed along the hole contours and along the surface of the 

plate S, respectively. Finding the componentsQ,,(*)permits evaluation of the functions 
fall(l)(t) by means of known relationships /2,3/, and the components Qas@) the evaluation of the 

functions $a,,(0) (1) and ll'nrri (') (t) from (1. 8) . 
have the value of the load Qav(') 

It is quite important that it is here sufficient to 

only on the main contour and of the functions cy(") (z) and 
$(O) (z) only in the elementary cell s". This significantly facilitates the practical utiliz- 

ation of (2.3) and (2.4). 
After having determined the coefficients apk and bol, from (1.10) and (1.11) by using 

(1.9), (1.5) and (1.4), the components of the state of stress of the generalized periodic 

problem are found. Such a method of calculating the components mentioned turns out to be 
logical only at points of the domain P'. For points in the other cells these calculations 
should be performed on the basis of (1.3). 

The desired state of stress of the strip is constructed as the sum of the states in the 

generalized periodic problemsgenerated by the expansion (2.1). 

Example. To illustrate the scheme elucidated, we examine more specifically the com- 
putation of the state of stressofa stripweakenedby a transverseseriesof n holeswhoseoutlin- 

esareloadedby uniformly distributed bending moments of intensity ,\I. The left edge of the 
strip is simply supported, while the right edge is simply dependent. 

As has already been noted, it is expedient to investigate an infinite plate S with a 

regular series of holes instead. Let us successively number all the holes to the right of 

the plane H, by 0, 1, 2, ., and to the left of II,, by -1, --2,. . . The geometric parameters 2 
and d characterizing the mutual location of the holes, as well as the loads on the outlines 

in the domain !P agree at the strip and the plate s. The load on the plate should be 

converted by the irreducible representation Tag* of the group C,*. In conformity with (1.1) 

and (1.3), this means that 

(r)* 
Mr.2 = 

{ 

Jf(r = 4h'n, 4Nn + 1, . ., 4Nn + 2n - 1) 
-M (r = 4Sn i- 2n, 4Nn + 2,~ + 1, 4~n + J,, - t), (N: 0 &i i’ .) (2.5) 

3 3 1 
Here M(B;1* and M(‘) denote the intensities of the moments on the outline of the 

hole corresponding to t*ha loads Qop* 

r -th 

and Q,,. 
It follows from (2.2) and (2.1) that 

Here R,= nl2 for even and R, (,I + I); 3 for odd n. Moreover, by virtue of (l-l), (2.4), 

and (2.5) 
n-1 n--l 

.21("' ---.$4C~i" (2'-yl')nr , @-UnItI, 1 - A4$._1),,,,,,= ,!,(I-C cos "iPjL'in') (2.7) 

I.=1 r=1 

In conformity with the expansion (2.6), first the R, of the generalized periodic problems 

are solved. For the i -th problem we must put in (1.7), (1.8) and (1.10) 

K, = (R + Y) / (1 - \), K, == --1, $4 (2) := I@' (z) = 0 ) rl fl;,)_l)n,n, 9 (4 = s?), 0 (q = 1, ") 

and J'LU?l = 0 (m # 1). The components of the states of stress obtained in the generalized problems 

are superposed by formulas identical to (2.6). 

Values of MR* L-- M,lM and M,* = M,l.V are presented at points of the outlines of dif- 
ferent holes in Table 1 for 1 zm 2.4, d = 1.2, v 11$ as a function of the polar angle 0 and the 

number n of holes in the strip. The number of the holes is indicated in the column denoted 

by N. The necessary data are also presented for the ordinary periodic problem (n= m). It 

is seen that a state of stress similar to the periodic is built up in the zone adjoining the 

simply dependent edge. The state of stress near the free edge has a substantial difference. 

The quantitative and qualitative questions occurring in this connection are investigated in 

more detail in Sect.4. 

3. Expansion of the main state of stress. When the load is distributed over 

the edges or the surface of the strip, the direct utilization of (2.3) and (2.4) is difficult. 

It is more convenient to decompose the state of stress of the plate 8 rather than the load, 

i.e., to decompose the functions 'pm@')*(z) and $~,~i~)*(z) into components marl@) (z) and &,(O) (z). 

Let us first introduce the quantity R, which equals n! 2and (n - 1) / 2 , respectively, 
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--2.(X 

0.02 

-3.!13 

-4.26 

0.03 

-5.16 

!.2F, 

- I .i!l 

- I.90 

0.03 

--I.73 

-2.2c 

---2.50 

-- 1.81 

0.02 

--2.X 

-3.01 

0.02 

--3.6!) 

3n:,o 1 s !! I - 
- U.l’.l I.12 

- 0.3 -1.11 

---II.Gli -0.7; 

0.00 - 0.02 

-0 ,53 --1.05 

-0.64 -0.71: 

--0.74 O.b7 
-0.53 -1.07 

-0.01 -0.01 

-0.75 -0.6/l 

--~o.sl --0.61 

-0.01 -0.01 

-0.92 -0.54 

i.T,iO 9rr/lO x 

-- 

__:.‘lq - 0.85 -0.4S 

-1.57 -0.67 -0.49 

-0.75 -l.(F) -2.41 

--0.01 0.01 0.02 

--1.60 -0.h7 -0.49 

--0.84 -1.i2 -2.59 

-0.76 -2.55 - 3.47 

-1.6Z --0.87 -0.49 

0.00 0.01 0.01 

-O.\l -2.62 -3.70 

-0.82 -3.00 -4.2" 

-0.01 0.02 0.03 

-0.92 -m3.69 m-5.16 

Table 1 

for even and odd n , and let us also note that in conformity with (1.3) 

oft,(z)= i GP(@") Q&-j), Q;,(-)=~~~r:,,,,(T_,,)Qp,(P+?nl) 
(3.1) 

I'-=, 

Moreover, it follows from (1.1) and (2.2) that 

GP(%) = %p(@0), &p(T-?I) = 7,11P(T_n) 

from which there results by virtue of elementary properties of the representations 

~,~~r,,,,,(T,)T~,,,,(L),)=TD_nP(O1.)l ,$ (T,)~~~~(T-,)=z,,,(T,-,) 

(3.2) 

(3.3) 

Now, using the relationships (3.1)- (3.3) instead of (2.3), we obtain 

+A& 

,I --R,--l 

‘1mlP (@A a& c-z + 2rl) + JJ %ql, (T-r) Q&3 (z + 24 (rl = 17 2) 
I’-=1 r=1 / $1 

This formula is valid for any function written in the invariant reference system, includ- 

ing those for the bending moments and torques. Let us note that the sign of the torques should 

be reversed in the subdomains @,P when writing in the invariant system. In this connection, 
we obtain by using (1.4) and (3.4) 

I~uT;,,(“)=TEE{fi 
7, -n -1 

tz,,,, ((3,) Rr cp;; (- z + ?rq c 
p=1 r-71 

z,,,(T_,.)Req$b(z + M)] (q=l, 2) (3.5) 

r=0 

If 0)" is the neighborhood of the point z0 lying entirely in the domain of analyticity 
of the complex functions, then the neighborhood go, of the point gz, also belongs to this 

domain. We assume that 

'pa,,(z) = x a(PL'l)(z - #, 
R=i 

(p;O(o,z)= ks1 hr;i."'(C+,z - @,z,)" 
(3.6) 

X 

'p& (T,z) = B ck?;'(T,z - T,Zo)k, 
kSl 

\-z EC!,, (11 =I, 2) 

The constant in the Taylor series is omitted since it does not affect the state of stress of 

the plate. After substituting the series (3.6) into the equality (3.5) and equating coeffic- 

ients for identical powers of the difference Z- zO, we find 

opl_$-Q~ 
n--R;-1 

P=l I%=1 
rallp(Or)(-l)~-'bo+ c %&)C(kBP)}, (k=l,Z,..:) 

r=o 

By using this relationship, the first of (3.6) is reduced to the desired formula. 
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Using an analogous method and considering an appropriate representation for 

@ - 2) 'Pa; (2) - 'Pa; (2) + IF,?? (z) 

instead of (3.5), we obtain the required expansion *'Xl (2) - Both expansions have the form 

x,(z)= (T-,)x:,(: + N) - t (3.7) 
r=1 

For one-dimensional representations of the group C,* only the first term corresponding 

to the value p = p is conserved in the sum over p. 

Let us note that the complex functions %* (z) and %* (z) need not be found on the 

whole plate S to apply the expansion (3.7). It is sufficient to limit oneself to giving them 

in the domain P* occupied by the strip since the components 'Fall (2) and &,,(Z) should be 

determined only in the domain 62' for the solution of the generalized problem. 

4. State of stress of a freely supported strip. The purpose of the investiga- 

tion conducted below is to refine the estimate of the state of stress of a strip of finite 

width for the problem of moment concentration around a regular transverse series of circular 

holes or inclusions. Without limiting the generality, the radius of these latter is taken 

equal to unity. 
According to Sect.2, the state of stress of the band under consideration and of the in- 

finite plate s in the domain Q,* is identical, if the plate load is obtained by the irred- 

ucible representation T",* of the group C,*. It follows from (2.2) and (2.1) that 

(4.1) 
,=u 

The contour loads are considered zero, i.e., fg;(t) = 0. In conformity with the recom- 

mendations of Sect.3, we decompose the main state of stress into components being converted 

by the irreducible representations of the group C,* rather than the load. In connection 

with (4.1), we have 

,1? 
'ij;)* i:) 3 ‘IF!,,, 2 (Z), *so,‘*(:) --- 5 @gin, Z(L) (4.2) 

.,?,1 ,=” 

where the functions llY1; ii,! (r) and li-& li.2 (z) are determined by (3.7) in which the functions 

V(O) (2) and Q(') (2) describing the state of stress of a solid strip can be used in place of 

,Pu2(")v (i) and q ii?(")* (~1 . 

Fig.2 

Fig.3 

Pure cylindrical flexure. A strip with holes is bent by moments of intensity M 

which are distributed along the rectilinear edges. The main state of stress of the strip is 

described by the functions 'p@)(z)=- Mz/4, #") (2) = --3Mz / 4. As an illustration, we present the 

nonzero components of the expansion (4.2) and their related functions defined to the accuracy 
of a constant for the case IL== 8 
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Analysis of the numerical results shows that from the strength viewpoint the bending 

moments Ma are the greatest danger in the middle part of t!le strip at those points of tie 

contours that are on the 5 axis. The quantities M,* = M,l M at the points mentioned are 

presented in the upper half of Fig.2 for I-7 2.3 and E, :m 0.5 . To be more graphic, the con- 

structed points of the graphs are provisionally connected by continuous segments to the holes 

by necks and shading. It is seen that for sufficiently large ,z a state of stress close to 

the periodic kind occurs at the middle part of the strip. In this zone the maximum moment 

concentration occurs (the level of the moments of the main state of stress is shown by the 

continuous lines). 
Table 2 

2 1 

1 

4 2 
1 

8 2 
4 
1 
4 

IG 6 
8 

M - 

e=o rr/lO 3n/10 

- 

1.16 0.92 1.27 
1.35 1.05 1.23 
1.49 1.14 1.18 
1.45 1.10 1.19 
1.70 1.27 1.16 
1.84 1.37 1.17 
1.48 1.12 1.16 
2.03 1.49 1.17 
2.12 1.56 1.16 
2.15 I.59 2.18 
2.60 I.90 1.21 

- 

- 
ZT,? ;?I 1” 

1.99 I. 94 
I. 98 I.!18 
I.62 1.22 
1.L'4 1.97 
1.62 1.27 
1.53 1.1'; 
1.64 1 !lS 
1.52 1.20 
1 .4!) 1.19 
1.48 1.1s 
1.43 1.21 

?X,“O 

I.08 
1. O!) 

I.OG 

1.0s 

1.13 
1.35 
1.0’) 
1.43 
1.54 
1.55 
I.90 

n 

0.70 
0.70 
1.37 
0.70 
1.45 
1.81 
0.70 
1.91 
2.08 
2.14 
2.tio 

An additional representation of the nature of the moment distribution in a strip with 

the mentioned geometric characteristics is given by Table 2 in which the quantities Me/M 

at points of different contours are presented as a function of the polar angle e and the 
number n. 

Graphs of the dependence of the maximum moment concentration coefficient K" for the 
strip at points of the z axis on the number of holes for E, ::= 0.5 and different values of 1 
are given in the upper half of Fig.3. For an infinite number of holes, i.e., for the ordin- 

ary periodic problem, the coefficient K' (the dashed lines) always turn out to be higher 

than for the finite number. For n>8 and 1>3 it can be considered that Knz K’. However, 
such an equality is achieved for considerably larger values of n as the holes are approached. 
In this connection, the differences between Kn and h" become perceptible for lc2.5. 

Cylindrical bending by forces. A strip with an even number ofrigidinclusionsis 
bent by transverse forces of intensity v distributed uniformly over the axis of the strip. 
Let us introduce the notation M-= rlnll4. The provisional lines of the distribution of the 

quantities M, .II, along the r-axis for "I == 0.5 and I = 2.3 , as well as graphs of the 
moment concentration coefficient A" on the contour with number n/2 are presented in the 
lower half of Figs.2 and 3. 
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